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Abstract

The theory of moireÂ fringes on X-ray diffraction
topographs of bicrystals is derived from the dynamical
theory of X-ray diffraction for the re¯ection (Bragg) and
the transmission (Laue) case. The in¯uence on the moireÂ
fringes of the diffraction geometry, of the geometry
of the sample, of its optical properties and of the
topographic method is investigated. The perfect-crystal
theory is also expanded to weakly deformed bicrystals.

1. Introduction

Diffraction moireÂ fringes can be observed on X-ray or
electron diffraction topographs of bicrystals. The ®rst
experimental evidence of such fringes was obtained by
Mitsuishi et al. (1951) using transmission electron
microscopy. Analysis of moireÂ fringes can, for example,
serve in the study of dislocations (Bassett et al., 1958).
X-ray diffraction moireÂ fringes can be observed on
topographs of LLL interferometers (Bonse & Hart,
1965; Gerward, 1978; Aboyan & Arshakyan, 1993) and
of bicrystals (Chikawa, 1965; Lang, 1968; Jiang et al.,
1990). X-ray moireÂ topography is able to reveal lattice-
parameter differences and rotations between crystal
plates in the range from 10ÿ4 to 10ÿ9, which leads to
numerous applications (Hart, 1975).

The theory of diffraction moireÂ fringes was ®rst
developed for the case of electron diffraction (Hashi-
moto et al., 1961; Gevers, 1962). A translation of the ®nal
results to the case of X-rays is found in the work of
Chikawa (1967). Simon & Authier (1968) derived a
theory of moireÂ fringes from Takagi's equations. Kato
(1974) presented a theory for both spherical and plane
waves of the X-ray diffraction by a bicrystal containing a
mis®t boundary. A detailed investigation of the same
general situation and of many special cases was under-
taken by PolcarovaÂ (1978, 1980). Recently, the theory of
the moireÂ effect was reconsidered by Yoshimura (1996)
in the frame of a `non-projectivity' observed on a series
of moireÂ topographs. The properties of the so-called
`translation-fault fringes' were described by Bonse &
Hart (1968) and experimentally investigated by Bonse et
al. (1969). Later, Ohler et al. (1997) showed that trans-
lation-fault fringes are nothing but moireÂ fringes.

Despite the large number of publications on diffrac-
tion moireÂ fringes, their description is still not complete.
For example, no theoretical and almost no experimental
study of the moireÂ effect in the Bragg case has been
published. Moreover, important properties of the moireÂ
fringes have not yet been clearly derived from the
theory of X-ray diffraction. The aim of the present
article is to give a compact formulation that allows one
to understand in a convenient way the properties of
moireÂ fringes, their dependence on the diffraction
geometry (transmission or re¯ection, asymmetry, non-
coplanarity), on the sample geometry (gap and crystal
thicknesses), on the optical properties (absorption,
refractive index) and on the topographic method (plane-
monochromatic or integrated-wave topographs). The
present work also puts together several aspects of the
moireÂ effect that have already been described in the
literature and it forms the basis for quantitative studies
of moireÂ fringes on X-ray topographs (Ohler et al., 1996,
1999; Prieur et al., 1996).

2. Dynamical X-ray diffraction for the case of a bicrystal

This article is restricted to bicrystals with plane parallel
surfaces and interfaces, which is the most common
situation for bicrystals produced by ion implantation.
However, small deviations will be considered and a
generalization for interfaces with any orientation is
possible. We use the level of approximation of the
classical dynamical theory which is a quadratic approxi-
mation for the dispersion equation. Hence, diffraction
geometries with grazing beam incidence or beam exit or
Bragg angles close to 90� must be excluded (but in
principle the approach presented in this paper may be
further developed to be applied to such cases). Then,
Abele's matrix formalism of the dynamical theory of
X-ray scattering (Berreman, 1976) greatly simpli®es the
calculation and also allows the present formulation to be
expanded to samples composed of more than two crystal
plates. In Appendix A, the matrix is derived that relates
the amplitudes e0,e and eH,e at the entrance surface to the
amplitudes e0,a and eH,a at the exit surface of a single-
crystal plate:
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e0;a

eH;a

� �
� A

e0;e

eH;e

� �
; A � 	

�0'00 �0'H0

�H'0H �H'HH

� �
:

�1�
The transmission coef®cients along the forward-
diffracted and diffracted directions, �0 and �H, respec-
tively, the re¯ection coef®cients in these two directions,
�0 and �H, respectively, and the phase factors 'GG0 (from
here on G and G0 are both either 0 or H) and 	 are
given in Appendix A in such a way that equation (1) is
valid for the Laue case (where eH;e � 0) and the Bragg
case (where eH;a � 0).

It is convenient to use this matrix formulation to
describe the diffraction by a bicrystal. Fig. 1 then shows
that for the Laue case the diffraction by the second
crystal can be described by two matrices, the matrix B0,
related to the forward-diffracted beam from the ®rst
crystal, and the matrix BH, related to the diffracted beam
from the ®rst crystal. In the Bragg case, the in®nite
number of diffraction events by both crystals can be
accounted for with an in®nite number of diffraction
matrices, A(n) and B(n) from the ®rst and second crystals,
respectively.

2.1. Laue case

For the Laue case, B0 and BH can be put together to
give a single matrix B. The ®rst column in the matrix B of
the equation comes from B0 and describes the diffrac-
tion by the second crystal of the forward-diffracted wave
from the ®rst crystal. The second column in B comes
from BH and describes the diffraction by the second
crystal of the diffracted wave from the ®rst crystal. In the
matrix B, the transition through the gap and the phase
accumulated behind the second crystal can be included:

B �
ÿ0	0�00'00;B exp�2�ik00 � r�

ÿH	H�H0'H0;B exp�2�ikH0 � r�
ÿ0	0�0H'0H;B exp�2�ik0H � r�

ÿH	H�HH'HH;B exp�2�ikHH � r�

2664
3775:
�2�

The transmission and re¯ection coef®cients, �GG and
�G;G0 6�G, the phase factors, 'GG0,B and 	G, the coef®-
cients for the transition through the gap, ÿG, and the
wave vectors, kGG0, can be found in Appendix B; r is an
arbitrary position behind the bicrystal.

Now, the amplitudes at any position on the exit
surface of the bicrystal, rS � ra0 � x (with x parallel to
the sample surface), can be calculated from the ampli-
tudes at the entrance surface, e0,e and eH;e � 0, by
multiplying the matrices in (1) and (2). The forward-
diffracted and diffracted intensities are then:

I0�rS� � je0;eÿ0		0j2
�
j�0�00j2 �

����ÿH	H

ÿ0	0

�H�H0

����2
� 2Re��0�00�

�
H�
�
H0 exp�2�i�Laue��

�
IH�rS� � je0;eÿ0		0j2

�
j�0�0Hj2 �

����ÿH	H

ÿ0	0

�H�HH

����2
� 2Re��0�

�
HH�

�
H�0H exp�2�i�Laue��

�
: �3a�

Here, an asterisk (*) indicates the complex conjugate
and Re the real part. The phase �Laue can be decom-
posed into one contribution that varies spatially, the
moireÂ effect, and others that are spatially constant and
are due to the gap thickness tg, the difference of the
refractive indices between the gap and the crystal
�� � �0 ÿ �0;g and the reciprocal-lattice vector differ-
ence �H:

�Laue � �moir�e ��gap ��refr ���H;Laue �3b�
with

�moir�e � �H � rS; �gap � ÿ�
tg

�0

; �refr �
��

2
�ktg;

��H;Laue � ÿtb

�H

2
� sH

H

� s0

0

� �
:

Fig. 1. The wave vectors, diffraction vectors, amplitudes, surfaces,
interfaces and the matrices that characterize the diffraction process
for (a) the Laue and (b) the Bragg case.
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[For the de®nitions of the symbols used in (3b) see
Appendices A and B.]

The expressions (3a) and (3b) contain many special
cases that are discussed in detail in the literature. For
example, when tg � 0 and �H � 0, they lead to the
diffracted and transmitted intensities of a perfect single-
crystal plate with the thickness of the bicrystal. For
tg � 0 and �H 6� 0, one obtains the solutions given by
PolcarovaÂ (1978, 1980) for plane parallel interfaces.
Moreover, when tg 6� 0 and �H � 0, intensity modula-
tions on the rocking curve are expected when tg reaches
the scale of the PendelloÈsung length �0 (Yoshimura,
1991). For a large �H, the distance between the moireÂ
fringes is small and only the ®rst two terms of I0(rS) and
IH(rS) in equation (3a) contribute to the measured
intensity because the terms Re[ . . . ] are cancelled out
(Gaca, 1974).

2.2. Bragg case

The Bragg case has been studied intensively in the
frame of X-ray diffractometry. This technique averages
over the lateral extension of the sample. However, for
the moireÂ topography, the locally diffracted intensity
must be determined. For practical reasons, only the
diffracted waves are considered here, but the expres-
sions for the waves transmitted through the sample can
be derived in a similar way. Following Appendix C, one
is able to obtain the coef®cients of the diffraction
matrices A(n) and B(n), where B(n) includes the trans-
mission through the gap:

A�n� �	�n�A

��n�0A'
�n�
00;A ��n�0A'

�n�
H0;A

��n�HA'
�n�
0H;A ��n�HA'

�n�
HH;A

" #

B�n� �	�n�B

ÿ0�
�n�
0B'
�n�
00;B ÿH�

�n�
0B'
�n�
H0;B

ÿ0�
�n�
HB'

�n�
0H;B ÿH�

�n�
HB'

�n�
HH;B

" #
:

�4�

From Fig. 1, one now reads matrix equations that allow
one to ®nd a recursion formula for the diffracted
amplitudes e

�n�
H;e. The total diffracted intensity at any

position in the entrance surface, rS � re � x, is then
Itot

H �rS� � j
P

e
�n�
H;e exp�2�ik

�n�
H � rS�j2. With Appendix C

one ®nds:

Itot
H �rS� � je�0�0;ej2

����� ��0�HA

��0�HA

� ��0�HB

��0�HA�
�1�
HA�

�0�
HB

�
�

exp�2�i��1�Bragg� ÿ
P1
n�2

�ÿ1�n exp�2�i��n�Bragg�

�
Yn

j�2

�
�� jÿ1�

0A �� jÿ1�
HB

�� j�HA�
� jÿ1�
HB

�������
2

�5a�

��n�Bragg � n��moir�e ��gap ��refr ���H;Bragg�
�5b�

with

�moir�e � �H � rS; �gap � ÿ�
tg

�0

; �refr �
��

2
�ktg;

��H;Bragg � �tA � tg�
�H

2
� sH

H

� s0

0

� �
� ntg

�H

2
� sH

H

ÿ s0

0

� �
:

In equation (5b), the individual terms are similar to
those for the Laue case (3b), only ��H,Bragg has one
contribution from the ®rst crystal (tA) and another from
the gap, whereas ��H,Laue has one contribution from the
second crystal (tB).

The equations (5a) and (5b) can also be discussed for
several special cases. When �H is parallel to the surface
normal and for a �H perpendicular to the diffraction
plane, the sum in (5a) can be evaluated analytically (see
Appendix C). This solution can also be used as an
approximation for the intensity pro®le in some other
cases. For �H � 0, as in the Laue case, the rocking
curve shows intensity modulations when the gap thick-
ness reaches the scale of the PendelloÈsung length. For a
large �H and for the ®rst crystal in Bragg re¯ection, the
second crystal is out of the re¯ection condition and thus
only the ®rst term in the sum of equation (5a) contri-
butes to the diffracted intensity.

3. Properties of moireÂ fringes

3.1. Geometrical properties

For both the Bragg and the Laue case, the diffracted
intensity is modulated with a periodicity given by the
reciprocal-lattice vector difference �H, but only for the
Laue case is it modulated with cos(�H � rS). In the
Bragg case, it has a contribution from the fundamental
spatial frequency, �H, and from higher harmonics,
n�H. In our experiments, the moireÂ patterns were
always very similar to a cosine modulation for the Laue
case, but very different from a cosine modulation for the
Bragg case.

Moreover, the moireÂ fringes are projective for both
the Bragg and the Laue case, which means that the
moireÂ pattern is the diffracted intensity at the surface of
the crystal projected on the ®lm plane. This is a direct
consequence of the elastic scattering process (all wave
vectors outside the crystal have the same length) and the
fact that no propagation (properties of the waves before
and especially after the crystal) is included. Thus, the
present theory cannot explain the `non-projectiveness'
observed by Yoshimura (1996).

The terms �moireÂ in (3b) and (5b) also show that for
perfect bicrystals the fringes are given by the component
of �H that is parallel to the sample surface, �H||: the
moireÂ fringes are perpendicular to �H|| and have a
spacing of |�H|||

ÿ1. The component perpendicular to the
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sample surface, �H?, cannot be determined from the
direction and the spacing of the moireÂ fringes because
�H? is not related to a break of the translational
symmetry of the sample (Ohler et al., 1996). This holds
for the Bragg and the Laue case. It is also independent
from the asymmetry, the noncoplanarity (the incidence
plane, parallel to the incident wave vector and the
surface normal, and the diffraction plane, parallel to the
incident wave vector and the diffraction vector, are not
parallel) and the Bragg angle of the re¯ection. This
result is important for the analysis of white-beam
experiments in which many topographs are recorded in
a single exposure but each with its own asymmetry,
noncoplanarity and Bragg angle.

3.2. Optical properties

The in¯uence on the moireÂ fringes of the difference
between the refractive indices in the two crystals and the
gap thickness is described by the terms �refr in (3b) and
(5b). These terms can lead to a global displacement of
the moireÂ pattern on the topograph; they only vanish for
the symmetrical Laue case but they do not lead to a
modi®cation of the fringe direction or the interfringe
spacing.

When high X-ray energies are used, the absorption in
the sample may become very weak. When in addition
the fringe spacing is much larger than the PendelloÈsung
length, a contrast inversion is expected between the
topographs recorded with the forward-diffracted and
the diffracted beams (Appendix B). This is also
expected for reasons of energy conservation.

Another case of great practical importance is an
anomalous transmission (e.g. Batterman & Cole, 1964)
through the thick part of a bicrystal and a negligible
absorption in its thin part. Under such conditions, a
contrast inversion is only expected when the thick plate
is at the entrance side of the bicrystal. When the thick
crystal is at the exit side, the moireÂ patterns recorded
with the forward-diffracted and the diffracted beams
have their maxima at the same position. This is
demonstrated in Appendix B; a physical argument for
the effect has been presented by Bonse & Hart (1968).

Such a contrast inversion has been attributed,
however, to `translation fault fringes' by Bonse & Hart
(1968) and Bonse et al. (1969), but here, as in a previous
work (Ohler et al., 1997), it is seen that such `translation
fault fringes' are nothing but moireÂ fringes.

3.3. Dependency of the position of the moireÂ pattern on
the angular deviation from the kinematical Bragg
condition

Equations (3) show that for the Laue case the moireÂ
pattern is given by a sine and a cosine term with

amplitudes that depend on the deviation from the
kinematical Bragg condition [see equation (18)], as does
the absolute position of the moireÂ pattern.

It is shown in Appendix D that, for highly collimated
and highly monochromatic radiation, the moireÂ pattern
is translated over distances of one interfringe distance
when the angular deviation from the kinematical Bragg
condition, ��, varies by ��=!0 � 2�0=�tA � tB� where
!0 is the half-width (full width at half-maximum, or
Prince±Darwin width) of the re¯ection.

In Appendix D, experiments with medium collima-
tion and monochromaticity are investigated. Under such
conditions, no displacement of the moireÂ fringes with a
variation of �� is expected when both crystal plates are
much thicker than the PendelloÈsung length. When either
of the two plates has a thickness t, which is much smaller
than this length, such a dependence is very weak: a
variation of �� only results in a displacement of a
fraction ��t=�2!0�0� of a moireÂ fringe spacing.

3.4. Fringe contrast on integrated wave topographs

Often moireÂ fringes are recorded on `integrated wave
topographs' (Tanner, 1996), that means either with a
white but highly collimated (`white-beam topography')
or a quasi-monochromatic X-ray beam from a source
with a large angular source size (`Lang topography').
This situation is investigated in Appendix D for the case
of no absorption, a negligible gap thickness and a large
distance between the moireÂ fringes. In Appendix D, the
contrast of moireÂ fringes is studied as a function of the
PendelloÈsung length for different thicknesses of the two
crystals. For two crystals that are much thicker than the
PendelloÈsung length, the contrast is 1=5 when the
thicknesses of the two crystals are about the same.
However, the contrast is 1=3 for two crystal plates that
have very different thicknesses. When either of the
crystals has a thickness comparable to or smaller than
the PendelloÈsung length, the moireÂ contrast must be
calculated numerically. Two examples are shown in
Fig. 2.

4. Expansion to locally perfect bicrystals

In many practical cases, the reciprocal-lattice vector
difference �H depends on spatial coordinates and the
bicrystal under study cannot be considered as perfect.
When the effective misorientation (see Appendix B) is
approximately constant over the `effective area of the
crystal' (KubeÏna & HolyÂ, 1983), the theory of the perfect
crystal can be expanded for a deformed crystal on a local
scale (HaÈrtwig et al., 1988). The same is possible for a
deformed bicrystal but then the phase shift due to the
moireÂ effect, �moireÂ in equations (3b) and (5b), must be
calculated in a cumulative manner between an arbitrary
reference point r0 and the observation point rS:
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�moir�e�rS� �
RrS

r0

�H�r0� dr0

� ÿRrS

r0

grad�H � u�r0�� dr0

� ÿH � u�rS� � constant:

Here, u(r) is the displacement ®eld of the atomic posi-
tions in one crystal relative to the atomic positions in the
other. For a perfect bicrystal, u(r) is a linear function in
r and in this case �H � r and ÿH � u(r) are equivalent.
For deformed bicrystals, the diffracted intensity also
depends on the local effective misorientation. Close to
crystal defects, both contributions to the contrast must
be considered but can be separated experimentally
(Prieur et al., 1996). Far from defects, the spatial varia-
tions of the diffracted intensity mainly depend on
�moir�e � ÿH � u�r� and a new moireÂ fringe is introduced
in the pattern each time this function equals an integer.
This allows the three components of the displacement
®eld u(r) to be reconstructed from moireÂ topographs,
with an interferometric resolution (Ohler et al., 1999).

When the thicknesses of the crystal or the gap vary,
the surface and interface normals are not parallel. It may
be shown that such non-homogeneities enter in the
expressions for the diffracted intensity as factors of
small quantities [like the Anpassung �(j), see Appendix
A]. Hence, small spatial variations of the interface
orientations lead to second-order contributions and can
be neglected. This means that the equations (3) and (6)
are valid on a local scale when crystal and gap thick-
nesses vary slowly over the sample. Then, variations of
the gap thickness only in¯uence the moireÂ fringes when
they reach the scale of the PendelloÈsung length [�gap in
equations (3b) and (5b)]; the same holds for variations
of the crystal thicknesses [�G, �G in equation (10)].

Often heterostructures like bicrystals are bent. It has
been shown by Ohler et al. (1996) that the in¯uence of
the sample bending on the moireÂ fringes scales with
the gap thickness and that for cubic crystals
�Hi � hitgap=�a0Ri� is a good estimation (hi are the
Miller indices of the re¯ection, Ri the bending radii, �Hi

the components of the additional reciprocal-lattice
vector difference, and a0 is the lattice parameter). The
sign of the bending radius can be inverted by inter-
changing the beam entrance surface and the beam exit
surface. Hence, with a comparison of two such moireÂ
topographs, the in¯uence of the bending and of the
reciprocal-lattice vector difference can be separated.

5. Summary

In the Laue and in the Bragg case the main source of
contrast variations on X-ray moireÂ topographs of locally
perfect bicrystals is the function H � u(rS) where H is the
diffraction vector and u(r) is the displacement ®eld
between the atomic positions in one crystal referred to
the atomic positions in the other. Here, rS is an obser-
vation point in the crystal surface. Spatial variations of
crystal and gap thickness as well as the variations of the
effective misorientation in weakly deformed bicrystals
can be described by applying the perfect-crystal theory
on a local scale. Only crystal and gap thickness varia-
tions that are of the order of the PendelloÈsung length or
more may alter the moireÂ fringes. The intensity pro®le of
the moireÂ pattern in the Laue case is different from that
in the Bragg case, but the asymmetry and the non-
coplanarity of the re¯ection have no in¯uence on the
fringe spacing and the fringe direction. For experiments
with high collimation and monochromaticity, the posi-
tion of the moireÂ pattern is very sensitive to the devia-
tion from the kinematical Bragg condition. However, for
the experimental conditions of medium collimation and
monochromaticity, the situation is different: the position
of the moireÂ pattern does not vary with the deviation
from the kinematical Bragg condition when both crystal
plates are much thicker than the PendelloÈsung length.
The displacement of the fringes is very small when either
of the two plates is much thinner than the PendelloÈsung
length. Finally, the contrast of moireÂ fringes on inte-
grated wave topographs can be calculated numerically.

APPENDIX A
Diffraction matrix for a single-crystal plate

The waves within a crystal are described by the
`fundamental equation of the dynamical theory' (e.g.
Batterman & Cole, 1964):

2k�� j�0 ÿk2P� �H

ÿk2P�H 2k�� j�H

� �
E
� j�
0

E
� j�
H

� �
� 0: �6�

Fig. 2. The moireÂ contrast on integrated wave topographs in the Laue
case for different PendelloÈsung distances. Two different thicknesses
of the ®rst crystal plate for a thickness of 550 mm for the second
crystal plate. The contrast oscillations are mainly due to the
oscillations of the integrated intensity of the thick crystal plate.
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Here, k is the vacuum wave number and the
�� j�G � jK� j�G j ÿ k�1� �0=2� are the complex excitation
errors [with jaj � �a � a�1=2], K� j�0 � k0 ÿ �� j�n and
K
� j�
H � K

� j�
0 �H are the wave vectors, and E

� j�
0 and E

� j�
H

the amplitudes inside the crystal for both sheets
( j � 1; 2) of the dispersion surface. The �� j� are the
Anpassung (Laue, 1960) along the surface normal n of
the wave vectors inside the crystal to the incident
vacuum wave vector k0. The polarization factor is P � 1
or P � cos 2� (� is the Bragg angle) depending on the
polarization state, and �0, �H and �HÅ are the Fourier
components of the dielectric susceptibility. The wave
vector of the diffracted wave outside the crystal is given
by kH � k0 �Hÿ gHn , where gH � ÿ��k sin�2��=H

with �� for the angular deviation from the kinematical
Bragg condition. Moreover, G � n � sG, where sG are
the unit vectors in the forward-diffracted (G � 0) and
diffracted (G � H) directions. It is then possible to
derive a quadratic equation for the Anpassung �� j� from
equation (6), which also provides the amplitude ratios
c� j� � E

� j�
H =E

� j�
0 in the crystal:

�� j� � ÿ1
2�k�0=0 � ��� y�=�0�

c� j� � ÿ�P=jPj��0�H=jHj� �H�1=2��� y�: �7�

Here, �0 � �0jH j=�H� �H�1=2=kjPj is the complex
PendelloÈsung length, y � ��2 � ��1=2, and � � 1 for the
Laue case and � � ÿ1 for the Bragg case. The � signs
refer to the two wave ®elds in the crystal related to the
two tie points excited on the branches of the dispersion
surface (Batterman & Cole, 1964). The normalized
angular coordinate � (Batterman & Cole, 1964), also
known as the `deviation parameter' �A (Authier, 1961,
1992), was probably ®rst used by Zachariasen (1945) and
is de®ned here in a general way as

� � ÿ�0��jk0 �Hj ÿ k�=H ÿ �g�
� ÿ�0�gH ÿ �g� � ��A; �8�

where �g � k��0=2 with � � ÿ1
H ÿ ÿ1

0 . The use of
the parameter � instead of �A has consequences with
respect to the form of equation (8) concerning the
appearance of a factor �. The de®nition of � in (8) allows
one to calculate, in a convenient way, the deviation
parameter for any incident wave vector and any
diffraction vector, and also for non-coplanar diffraction
geometries as long as the quadratic approximation for
the dispersion equation is justi®ed. However, equation
(8) must be interpreted correctly: when kH is the inci-
dent wave vector and ÿH the diffraction vector, H and
0 need to be interchanged and �(j) is the Anpassung to
kH and not to k0 which inverts the sign of �.

The amplitudes outside and inside the crystal are
related by the boundary conditions:

eG;� exp�2�ikG � r�� �
P

j�1;2

E
� j�
G exp�2�iK

� j�
G � r��

) eG;�'G;v �
P

j�1;2

E
� j�
G �� j�v

'0;v � 1

'H;v � exp�2�i�kH ÿ k0 ÿH� � r��
�� j�v � exp�ÿ2�i�� j�n � r��:

�9�

In these equations, G � 0;H and � is either `e' or `a' for
the entrance or the exit surface, respectively. Together
with the equations (7), the coef®cients in the matrix A in
equation (1) are:

�0 � cos�AAy� ÿ �i�=y� sin�AAy�
�H � cos�AAy� � �i�=y� sin�AAy�
�0 � �iP=jPj��� �HjHj=�H0�1=2 sin�AAy�=y

�H � �i�P=jPj���H0=� �H jHj�1=2 sin�AAy�=y

'00 � 1

'0H � exp�ÿ2�i�kH ÿ k0 ÿH� � ra�
'H0 � exp�2�i�kH ÿ k0 ÿH� � re�
'HH � exp�ÿ2�i�kH ÿ k0 ÿH� � ntA�

	 � exp��itA�k�0=0 � �=�0��:

�10�

Here, AA � �tA=�0 is the normalized crystal thickness
of the ®rst crystal. The equations (8), (9) and (10) are
written in a way that the matrices for the second crystal
in the Laue case and all matrices for both crystals in the
Bragg case, for all diffraction orders, can be obtained
from these equations by simple replacement rules.
Furthermore, the relation �0�H ÿ �0�H � 1 is valid for
both the Bragg and the Laue case and is useful in many
calculations.

APPENDIX B
Diffraction matrix of the second crystal plate in the

Laue case

The wave vectors k0 and kH from the ®rst crystal are
diffracted with the diffraction vectors H��H and
ÿ�H��H� by the second crystal. The wave vectors
behind the second crystal plate are then k00 � k0,
k0H � k0 �H��Hÿ �gH ��H � sH=h�n (both
excited by k0) and kH0 � k0 ÿ�H� ��H � s0=0�n,
kHH � kH (both excited by kH). The deviation param-
eters �G in the second crystal, related to the wave
vectors kG, are then found with equation (8) and the
replacements k0 ! kG0 and H! H��H:

�0 � �ÿ�0��H � sH�=H

�H � �ÿ�0��H � s0�=0:
�11�

The difference between � and the �G corresponds to the
effective misorientation (Authier, 1967), normalized to
the width of the re¯ection curve. Using the �G instead of
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� in (8) provides the amplitude ratios and the Anpas-
sung to kG0 of the wave vectors in the second crystal.
The boundary conditions for the waves excited in the
second crystal can now be obtained from (9) with the
replacements: k0 ! kG0, kH ! kGH , H! H��H,
e! e0 and a! a0. This also provides the phase factors
'GG0,B in equation (2) from the 'GG0 in equation (10).
Finally, the �00, �0H and 	0 in (2) are obtained from �0,
�H and 	 in (10) by replacing � by �0, and the �HH, �H0

and 	H by replacing � by �H and by replacing tA by tB in
all these functions. It is also possible to derive these
results from geometrical constructions of the dispersion
surfaces (PolcarovaÂ , 1978).

The relations between the transmission and re¯ection
coef®cients will now be discussed for two special cases:
the case of negligible absorption and the case of
anomalous absorption (Borrman effect). To simplify the
discussion, the approximation �0 ' �H will be made
here. As can be seen from equation (11), this approxi-
mation is valid for a moireÂ fringe spacing much larger
than the PendelloÈsung length. Nevertheless, the
conclusions drawn here are also valid when �0 6� �H .

For the case of no absorption, the arguments of the
sine and cosine functions in equations (10) are real.
It follows that for a non-absorbing second crystal
�0H � ÿ��H0 and �00 � ��HH . When the absorption is
small, these equations still hold approximately:
�0H � ÿ��H0 and �00 � ��HH . For the case of an absorbing
crystal plate, the imaginary parts of the arguments of the
sine and cosine functions in equations (10) cannot be
neglected. Using the relations cos z � �exp�iz� �
exp�ÿiz��=2 and sin z � �exp�iz� ÿ exp�ÿiz��=2, one can
express the transmission and re¯ection coef®cients by
the contributions from the strongly and the weakly
absorbed wave®elds. In the case of anomalous trans-
mission through the second crystal plate, the strongly
absorbed wave®eld can be neglected. Then, �00 � ��HH

still holds, but now �0H � ���H0. Details of such a
calculation, not using the present formulation in terms
of re¯ection and transmission coef®cients, may, for
example, be found in the work of Bonse & Hart (1968).
These results can now be put into equations (3a): for a
non-absorbing second crystal plate, the topographs
recorded with the forward-diffracted and the diffracted
beams display a contrast inversion, whereas the maxima
and minima of the fringes are at the same locations on
these two topographs for a second crystal plate in the
anomalous absorption regime.

Finally, the phase factors due to the gap, ÿG, in
equation (2) can be found from the boundary conditions
for the gap: eG;� exp�2�ikG � r�� � EG exp�2�iKG � r��.
Here G � 0;H, and � is either a (exit surface of the ®rst
crystal) or e0 (entrance surface of the second crystal) and
KG � kG � nk�0;g=�2G� are the wave vectors in the
gap. One obtains eG;e0 � ÿGeG;a, where ÿG �
exp��itg�k�0;g=G�� with tg and �0,g for the thickness and
the dielectric susceptibility of the gap.

APPENDIX C
Diffraction matrices in the Bragg case

Contrary to the Laue case, in the Bragg case the waves
scatter many times between the two crystals (see Fig. 1).
This can be taken into account by labelling the wave
vectors of the different scattering orders k

�n�
0 and k

�n�
H for

the forward-diffracted and the diffracted directions,
respectively. As also seen in Fig. 1, the wave vector k

�0�
H is

excited with a single diffraction from the ®rst crystal
(diffraction vector H). All other k

�n�
H are excited with n

diffractions from the second crystal (diffraction vector
H��H) and with n ÿ 1 from the ®rst crystal (diffrac-
tion vector ÿH). The wave vectors k

�n�
0 are due to

n diffractions from the second crystal and to as many
from the ®rst crystal. All these wave vectors are vacuum
wave vectors, k

�n�
G � k0 �G� n�Hÿ g

�n�
G n, where

g
�n�
0 � n�H � s0=0, g

�n�
H � gH � n�H � sH=H , and G is

either 0 or H. The vector k
�n�
0 excites the waves in the

®rst and in the second crystal that are described by the
matrices A(n) and B(n), respectively. Thus, the deviation
parameters in the ®rst crystal (index A) and the second
crystal (index B) are found with equation (8) using k

�n�
0

and the diffraction vector in the ®rst (H) and in the
second crystal (H��H) instead of k0 and H:

��n�A � �ÿ n�0�H � �sH=H ÿ s0=0�
��n�B � ��n�A ÿ�0��H � sH�=H :

�12�

Now the elements in the matrix A(n) are obtained from
(10) with the following replacements: �! ��n�A ,
k0 ! k

�n�
0 and kH ! k

�n�
H . The elements of the matrix

B(n) are obtained with the replacements: �! ��n�B ,
k0 ! k

�n�
0 , kH ! k

�n�1�
H , tA ! tB, a! a0, e! e0 and

H! H��H. The coef®cients for the transition
through the gap are the same as given in Appendix B.
The following matrix equations are read from Fig. 1:"

e
�0�
0;a

0

#
� A�0�

"
e0;e

e
�0�
H;e

#
;

"
e
�0�
0;a0

0

#
� B�n�

"
e
�n�
0;a

e
�n�1�
H;a

#
;

n > 0 :

"
e
�n�
0;a

e
�n�
H;a

#
� A�n�

"
0

e
�n�
H;e

#
: �13�

From these expressions, a recursion formula for the
diffracted intensities is derived:

e
�0�
H;e � ÿ

��0�HA

��0�HA

'�0�0H;A

'�0�HH;A

e0;e

e
�1�
H;e � ÿ

ÿ0

ÿH

	�0�A

	�1�A

��0�HB

��0�HA�
�1�
HA�

�0�
HB

'�0�0H;B

'�0�HH;B'
�1�
HH;A

e0;e

e
�n�1�
H;e � ÿ

ÿ0

ÿH

	�n�A

	�n�1�
A

��n�0A�
�n�
HB

��n�1�
HA ��n�HB

'�n�H0;A'
�n�
0H;B

'�n�1�
HH;A'

�n�
HH;B

e
�n�
0;e :

�14�

From these equations, one obtains:
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e
�n>1�
H;e � �ÿ1�n

 
ÿ0

ÿH

!n

	�0�A

	�n�A

��0�HB

��0�HA�
�1�
HA�

�0�
HB

�
Yn

j�2

"
�� jÿ1�

0A �� jÿ1�
HB

�� j�HA�
� jÿ1�
HB

#
'�0�0H;B

'�0�HH;B'
�1�
HH;A

�
Yn

j�2

"
'� jÿ1�

H0;A'
� jÿ1�
0H;B

'� j�HH;A'
� jÿ1�
HH;B

#
e0;e; �15�

where

'�0�0H;A

'�0�HH;A

� exp�2�ig
�0�
H n � re�;

'�0�0H;B

'�0�HH;B'
�1�
HH;A

� exp�2�ig
�1�
H n � re� exp�2�ig

�1�
0 tA�

� exp�2�ig
�1�
H tg�; �16�Yn

j�2

"
'� jÿ1�

H0;A'
� jÿ1�
0H;B

'� j�HH;A'
� jÿ1�
HH;B

#
� expf2�i�g�n�0 ÿ g

�1�
0 �tAg

� expf2�i�g�n�H ÿ g
�1�
H �n � reg

� exp

�
2�i
Xn

j�2

�g� j�H ÿ g
� jÿ1�
0 �tg

�
:

For a position rS � re � x in the entrance surface
(x � n � 0) of the bicrystal, one then ®nds the expres-
sions given in equations (5). These equations are very
general and must be evaluated numerically in most
cases. However, for special cases, analytical expressions
can be found. Such cases will now be discussed.

C1. Reciprocal-lattice vector difference perpendicular to
the diffraction plane

For a �H perpendicular to the diffraction plane,
�H � s0 � �H � sH � 0. Then it follows from equation
(12) that ��n�A � ��n�B � � for all diffraction orders. This
means that the wave®elds in both crystals are described
with the same deviation parameter. Now, the phase
��n�Bragg in (5b) can be written as ��n�Bragg � n�, where �
does not depend on n.

C2. Reciprocal-lattice vector difference perpendicular to
the sample surface

For a �H perpendicular to the sample surface,
�H � �Hn. Now, equation (12) shows that ��n�A � � and
��n�B � �ÿ�0�H � sH=H . This means that the deviation
parameters of all diffraction orders are the same in each
of the crystal plates but they are different between the
two crystals. This also allows one to write the phases
��n�Bragg in (5b) as ��n�Bragg � n� with � again independent
of n.

For both the above cases, the sum in (15) can now be
evaluated by rewriting it in the form of a geometrical
series 1ÿ x� x2 ÿ x3 � . . . � �1� x�ÿ1:

Itot
H �rs� �

����� �HA

�HA

� exp�2�i�� �HB

�2
HA�HB

�
1�

X1
n�2

�ÿ1�nÿ1

�
�

exp�2�i�� �HB�0A

�HB�HA

�nÿ1������
2

�
����� �HA

�HA

� exp�2�i�� �HB

�2
HA�HB

�
�

1� exp�2�i�� �HB�0A

�HB�HA

�ÿ1
�����

2

�
����� �HA�HB � exp�2�i���0A�HB

�HA�HB � exp�2�i���0A�HB

�����
2

: �17�

This ®nal expression can further be looked at for special
cases. For a vanishing reciprocal-lattice vector differ-
ence, �H � 0, one obtains the gap and crystal thickness
oscillations when a rocking curve is measured in the
Bragg case. If in addition the gap thickness vanishes,
tg � 0, then � � 0 and equation (17) leads to the
expression for the intensity diffracted by a single crystal
of thickness tA � tB.

APPENDIX D
MoireÂ fringes recorded with different topographic

techniques in the Laue case

To simplify the expressions and also to evidence the
fundamental effects, only the cases where
�0�H � sH=H � 1 and �0�H � s0=0 � 1 are investi-
gated. This leads to � � �0 � �H [see equation (8)].
Furthermore, a negligible gap thickness (�gap ' 0) and
zero absorption are considered. This means that the
PendelloÈsung length �0 and the normalized crystal
thicknesses AA � �tA=�0 and AB � �tB=�0 are real
quantities. Omitting the global factor
j�0�H=H� �H�e0;ej2, the diffracted intensity is then:

IH�rS� � ÎH ��IH;c cos�2��Laue�
��IH;s sin�2��Laue�

ÎH � �sin2�AAy� � sin2�ABy��=y2

ÿ 2�sin2�AAy� sin2�ABy��=y4

�IH;c � �sin�2AAy� sin�2ABy��=2y2

ÿ 2�2�sin2�AAy� sin2�ABy��=y4

�IH;s � �2�=y3� sin��AA � AB�y� sin�AAy�
� sin�ABy�:

�18�

Expressions (18) can be used to investigate the proper-
ties of moireÂ fringes under several experimental condi-
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tions: a very small � range, ��, used to record the
topograph corresponds to highly collimated and highly
monochromatic radiation. For a larger ��, equations
(18) must be integrated.

To perform such an integration, approximations can
be made for the functions that appear in (18). Therefore,
the function sin�Ay� with A as an arbitrary constant and
y � �1� �2�1=2 needs to be discussed. This function ®rst
equals zero for values of � that are closer to � � 0 than
��=A; beyond these positions, sin�Ay� has an oscillatory
character and sin�Ay� � sin�Aj�j� for �� 1. Thus, when
A� 1 and an integral of a product of �sin�Ay��n and an
arbitrary but slowly varying f(�) is to be found,
�sin�Ay��n can be approximated by �sin�Aj�j��n because
the error made in this way (mainly in the range
ÿ�=A< �< �=A) can be neglected. For a range of
integration ��� �=A, this leads to the following
approximations:R

f ��� sin�Ay� d� � 0R
f ��� sin2�Ay� d� � �A=2�� R2�=A

0

sin2�A�� d�R f ��� d�

� 1
2

R
f ��� d�R

f ��� sin4�Ay� d� � �A=2�� R2�=A

0

sin4�A�� d�R f ��� d�

� 3
8

R
f ��� d�: �19�

D1. Radiation of high collimation and monochromaticity

This situation appears when ��� �0=�tA � tB� and
thus equations (18) need not be integrated. The moireÂ
pattern is then given by a cosine and a sine term
multiplied by factors that depend on the deviation
parameter, as does the position of the moireÂ pattern
itself. Expressions (18) can then be transformed into

IH�rS� � ÎH ��IH cos�2���H � rS ���H;Laue ÿ '��
using the relation

a cos x� b sin x � �a2 � b2�1=2 cos�xÿ arctan�b=a��;
where

2�' � arctan
ÿ��=y� sin��AA � AB�y�

� fcos�AAy� cos�ABy�
ÿ ��2=y2��sin�AAy� sin�ABy��gÿ1

�
: �20�

For the case of electron diffraction, such an equation is
called a `displacement equation' of the moireÂ fringe
pattern (Gevers, 1962; Allinson, 1968). Equations (19)
show that, for j�j � 1, the displacement equation is
2�' ' ��AA � AB�. Hence, on plane monochromatic
wave topographs, the moireÂ pattern is translated over
one fringe spacing when the deviation parameter is
varied by �� � ��=!0 � 2�0=�tA � tB�.

D2. Radiation of medium collimation and monochro-
maticity

This situation arises when �0=�tA � tB� � ��� 1
and is typical for many topographical experiments.
Expressions (18) must then be integrated over the
range ��. This is performed by using the approxi-
mations (19). Within this range, the sine functions in
(18) may have several oscillations. In the present
context concerning the displacement of the moireÂ
pattern with a variation of the deviation parameter,
only the functions �IH;s and �IH;c are of interest. The
results are denoted �I

����
H;s and �I

����
H;c to indicate

the range of the integration.
When tA � �0 and tB � �0, then �I

����
H;s � 0 and,

consequently, the position of the moireÂ pattern does not
depend on the deviation parameter. However, for
tA � �0 and tB � �0, the functions �I

����
H;s � ����2��

sin2�ABy�=y4 and �I
����
H;c � �1=2������ sin�2ABy�=y3,

and the displacement equation is now 2�' �
ÿ arctan�y� cot�ABy�=��. For the small values of AB

studied here, one ®nds, within a good approximation,
that 2�' � ��AB plus a constant phase shift. This means
that, for the present case, a variation of �� only results
in a shift of a fraction ��tB=�2!0�0� of one moireÂ fringe
spacing.

Thus, when both crystal plates are much thicker than
the PendelloÈsung length, no displacement of the moireÂ
fringe pattern with a deviation � from the exact Bragg
position is expected. When one plate is much thicker
and the other much thinner than the PendelloÈsung
length, this displacement is, within a good approxima-
tion, a linear function in �, but the dependency is very
weak.

D3. Integrated wave topographs

An `integrated wave topograph' is recorded with
��� 1 and expressions (18) can then be integrated
over the deviation parameter from minus to plus in®nity.
Again, approximations (19) will be used for this
purpose. The results will then be denoted Î

�1�
H , �I

�1�
H;c

and �I
�1�
H;s . Because �IH;s in equations (18) is an odd

function in �, �I
�1�
H;s � 0. It is also seen that the integral

over the forward-diffracted intensity diverges, which is
expected for physical reasons. The function Î

�1�
H is

the sum of the integrated re¯ectivities of the two
crystal plates and of an interference term. The moireÂ
contrast Cmoir�e � jImax ÿ Iminj=�Imax � Imin� is given by
�I
�1�
H;c =Î

�1�
H .

When tA � �0, tB � �0 and tA and tB are very
different, the approximations (19) can be applied
successively for the oscillating functions in equations
(18). One obtains Î

�1�
H � 3�=4 and �I

�1�
H;c � ÿ�=4 and

thus a moireÂ contrast of CmoireÂ � 1=3. For tA � �0 and
tA � tB, one obtains Î

�1�
H � 5�=8 and �I

�1�
H;c � ÿ�=8 and

thus CmoireÂ � 1=5 in this case. In other cases, when the
approximations (19) cannot be applied, the integrations
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need to be performed numerically. The moireÂ contrast
then strongly depends on the PendelloÈsung length (see
Fig. 2).
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